PHYSICAL / INORGANIC CHEMISTRY ### DPP No. 37 Total Marks: 39 Max. Time: 42 min. Topic: p-block elements (Nitrogen and Oxygen family) | TOPIC | . p-block elements (Mit | iogen and Oxygen ian | 111y <i>)</i> | | | | |---|---|--|---|--|--|--| | Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.6 Multiple choice objective ('-1' negative marking) Q.7 True or False (no negative marking) Q.8 Assertion and Reason (no negative marking) Q.9 Subjective Questions ('-1' negative marking) Q.10 Match the Following (no negative marking) Q. 11 | | | | 3 marks, 3 min
4 marks, 4 min
2 marks, 2 min
3 marks, 3 min
4 marks, 5 min
8 marks, 10 mi | .) [4, 4]
.) [2, 2]
.) [3, 3]
.) [4, 5] | | | 1. | (a) Which one of the following reactions will give oxygen gas? (A) A reaction of PbO₂ with concentrated HNO₃. (B) A reaction of MnO₂ with concentrated H₂SO₄. (C) A reaction of KMnO₄ with concentrated HCI. (D) (A) and (B) both (b) Which of the following statement is correct? (A) AI₂O₃, ZnO, TeO₂ and Sb₂O₃ are amphoteric oxides. (B) Super oxides dissolve in water forming hydrogen peroxide and liberating oxygen gas. (C) CrO₃, Mn₂O₇, P₄O₁₀ and CI₂O₇ are acidic oxides. (D) All of these. | | | | | | | 2. | Which of the following is used as a bleaching agent ? | | | | | | | | (A) Hydrogen peroxide | (B) Ozone | (C) calgon | (D) (A) a | ind (B) both | | | 3. | (a) The oxidation number of sulphur in S ₂ Cl ₂ , SF ₄ and S ₈ respectively are : | | | | | | | | (A) +1, + 4 and 0 | (B) + 2, + 4 and – 2 | (C) 0, + 4 and – | 1 (D) 0, + | (D) 0, + 4 and 0 | | | | (b) H ₂ S cannot be dried by : | | | | | | | | (A) anhydrous CaCl ₂ | (B) P_2O_5 | (C) Conc. H ₂ SO ₄ | (D) All of | fthese | | | 4. | (a) Hot concentrated s
(A) SO ₃ | ulphuric acid dissolves s
(B) SO ₂ | sulphur forming
(C) H ₂ SO ₃ | (D) H ₂ S ₂ | O ₃ | | | | (b) $KCIO_3 + H_2SO_4 \xrightarrow{\Delta} KHSO_4 + HCIO_4 + (X) + H_2O$.
The product [X] is: | | | | | | | | (A) O ₂ | (B) Cl ₂ | (C) CIO ₂ | (D) Cl ₂ O | 3 | | | 5. | Which of the following statement is false for sulphurdioxide? (A) It reacts with dry chlorine in presence of charcoal to form sulphuryl chloride. (B) It reduces KIO₃ to iodine in acidic medium. (C) It when passed through a solution of sodium sulphide, produces Na₂SO₃. (D) It oxidises SnCl₂ to SnCl₄ in presence of HCI. | | | | | | | 6. | (a) Consider the following statements (i) Sulphur dioxide exists as discrete SO, molecules in gaseous as well as solid state. | | | | | | - (i) Sulphur dioxide exists as discrete SO₂ molecules in gaseous as well as solid state. - (ii) Sulphur trioxide exists in several modifications in solid state; cyclic trimer, and polymeric chain. - (iii) Bleaching by sulphur dioxide is through reduction process and is temporary. Select the correct one from the codes given. - (A) (i) and (ii) only - (B) (i), and (iii) only - (C) (i), (ii) and (iii) - (D) (ii) and (iii) only. - (b) Which of the following is correct? - (A) S_3O_9 contains no S–S linkage. - (B) $S_2 O_6^{2-}$ contains –O–O– linkage. - (C) (HPO₃)₃ contains P P linkage - (D) S₂O₈²⁻ contains S–S linkage - 7. (a) Aqueous solution of hydrogen peroxide: (A) turns blue litmus pink (D) bleaches blue litmus. - (B) gives bright blue colour in ether with acidified K₂Cr₂O₂ solution. - (C) gives yellow or orange coloured solution with an acidified solution of titanium salt. - (b) Which of the following statement(s) is / are true for the hydrides of the elements of 16th group? - (A) Their acidic character increases from H₂O to H₂Te - (B) Their thermal stability increases from H₂O to H₂Te - (C) Their reducing character increases from H₂S to H₂Te - (D) The order of their boiling points is H₂S < H₂Se < H₂Te < H₂O - 8. (a) Consider the following statements - **S**₁: (HPO₂)_n can be prepared by heating phosphorus acid and bromine in a sealed tube. - **S₂:** Dry iodine reacts with ozone and forms a yellow solid, I₄O₀. - **S**₃: β -Sulphur is stable below 369 K. and arrange in the order of true/false. - (A) FTF - (B) TTF - (C) TTT - (D) TFF - (b) True / false. - **S**_a: Sodium thiosulphate with FeCl_a solution develops a pink or violet colour which soon vanishes. - **S₂:** White precipitate of PbS₂O₃ gets soluble when boiled with water. - 9. Statement-1: Aqueous solution of hydrogen peroxide is kept in glass or metal container containing some urea or phosphoric acid beacuse Statement-2: Urea or phosphoric acid acts as a negative catalyst for the decomposition of hydrogen peroxide. - (A) Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1. - (B) Statement 1 and statement 2 are correct but statement 2 is not correct explanation of statement 1. - (C) Statement 1 is correct but statement 2 is false. - (D) Statement 1 is false but statement 2 is correct. - 10. (a) There is large difference in the melting and boiling points of oxygen and sulphur. Explain. - (b) Why solution of sodium thiosulphate turns milky on acidification? - (c) Out of following forms of sulphur which one is paramagnetic and why ? S_g , S_g and S_g . - 11. Match the following (one or more then one) #### Column - I Column - II - (A) H_a Te $< H_a$ O - (p) Boiling point - (B) SO₂ < SO₃ - (q) Thermal stability - (C) $H_2O_2 < H_2SO_4$ - (r) Acidic character - (D) $PH_3 < NH_3$ - (s) Reducing character #### DPP No. # 37 - 1. (a) (D) (b) (D) 2. - (D) - 3. (a) (A) (b) (C) 4. - (a) (B) (b) (C) 5. - (C) - (a) (C) (b) (A) 6. - 7. (a) (B,C,D) - (b) (A,C,D) - (a) - (B) (b) - S,: (True); S,: (false) - (D) - 10. On the basis of atomicity, oxygen diatomic where as sulphur is polyatomic. (a) - $Na_2S_2O_3 + 2H^+ \longrightarrow 2Na^+ + H_2SO_3 + S\downarrow$ (colloidal sulphur) (b) - S₂ (in vapour state) has two unpaired electrons, like O₂ - 11. (A - p, q); (B - p, q, r) (C - p, q, r); (D - p, q) ## **Hints & Solutions** ### PHYSICAL / INORGANIC CHEMISTRY #### **DPP No. #37** 1. (a) $$PbO_2 + 2HNO_3 \longrightarrow Pb(NO_3)_2 + 1/2 O_2 + H_2O$$ $2MnO_2 + 2H_2SO_4 \longrightarrow 2MnSO_4 + H_2O + O_2$ $2 KMNO_4 + 16HCI \longrightarrow 2KCI + 2MnCI_2 + 8H_2O + 5CI_2$ - (A) and (B). Source NCERT - 3. **(b)** $H_2S + H_2SO_4 \longrightarrow 2H_2O + SO_2 + S$ - 5. $2Na_2S(aq) + 3SO_2(g) \longrightarrow S \downarrow + Na_2S_2O_3(aq)$ - (b) (A), (B) (C) can be explained on the basis of decrease in bond (H-E) dissociation enthalpy (D) Hydrogen bonding, and van der Waal's force of attraction. - (a) S₁ (NCERT), S₃ β-Sulphur is stable above 369K. (b) (D) $$PbS_2O_3 + H_2O \xrightarrow{\Delta} PbS^{\downarrow}$$ (black) $+ H_2SO_4$ - 9. Kept in plastic or wax-lined glass containers containing urea or phosphoric acid. - (a) on the basis of atomicity, oxygen diatomic where as sulphur is polyatomic. - (b) Na,S,O, + 2H+ → 2Na+ + H,SO, + S↓ (colloidal sulphur) - (c) S₂ (in vapour state) has two unpaired electrons, like O₂. - 11. (A) $H_2O = 273 \text{ K}$, $H_2Te = 222 \text{ K}$; $\Delta_{diss}H (H—E()/kJ \text{ mol}^{-1} H_2O = 463 \text{ and } H_2TE = 238$; - (B) $SO_3 = 44.8^{\circ}C$ and $SO_2 = -10.07^{\circ}C$, SO_2^{+4} , SO_3^{+6} SO, more acidic than SO, - (C) H,SO, = 338°C; H,O, = 144°C - (D) NH₃ = 238.5°C, PH₃ = 185.5°C; ↓ down the group thermal stability ↓ acidic character ↑ Reducing character.